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4.1 EULER EQUATIONS IN THE FOUR-DIMENSIONAL SPACE

Known calculations, made as early as by Poisson for the transformation of

the velocity of points of space from system ® to ®' taking into
consideration the four-dimensional space, will be repeated in this chapter.

However, there is a significant difference between the calculations
presented herein and those currently existing, since the former strictly
introduce differential forms, defined on a differential manifold and
connected with the rotations of any SO(n) group, while emphasizing their
invariant hypersurfaces.

Let us consider subset U of the differential manifold of physical space
MRe, embedded in a four-dimensional Euclidean space E*. In addition,
later in this chapter, we will assume that identity mapping from the subset
of space UcE'toUisa map of the subset U .

In system O, there is a discriminated point 13 and the orthonormal base
{el- Zi:1,2,3,4} while in system ®', we have P'O and the orthonormal

base {e’i:i:1,2,3,4}. The figure below shows both of the coordinate
systems and position vectors of particle P . Versors of orientation for

mirror spaces & and ﬂ are denoted as “71 and ﬂfl, respectively.

A "R
7,
v g
FIG. 1
i d,.. d (< dr ddx, & de
—=—(X,+X")=v,+—| Y x'.€. |—=v,+ L +) X' —
dt dz(" )=v dt’[; ' ’]dz 0 g‘dt‘ ; “d (1)

After resolving the quantity ‘f{e"' in the base {e’i = 1,2,3,4}, we have:
t

de'. 4 " . .
i i k(i o A i Ao Ao 4 A Ao Aot AT Ap A
= E Adie'; = (AleersAe4+Aze4AesAe1+A3e4/\el/\ez+A4ez/\el/\e3) (2)
=1

dt'
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i
, where 4, :

i (0 de'i
Ak=(ek| dt') (3)

. . T . .
, and an isomorphism *' between the 7-dimensional vector space E” and

the |  |-dimensional space of the external products of n — 1 vectors.
n—1
In a generalized case, an isomorphism * between the linear space k of

external products A E" and the linear space of n-k external products
/\n—k En

T _
(e,l/\e,z/\.../\eik) £, e Nne  A.LAg (4)

/AR U P g [T by g

In particular, for a four-dimensional space, we have:

(e, ne, ne,)=¢

I —
(e, neyne)=e, (5)
* (e4 ne /\ez): G
e, ne ne)=e,
Therefore, assuming the following notations:
3
e, ne;ne, =g
3
e, ne;ne =¢,
. (6)

3
e, ne ne, =e

3
e, ne ney=e,

, we have:
T n n-1 n
. T
D6 DF=D xe 7
i=l i=l

n—1

,where n=4,xekE", e

1
, or more generally,

r n-1 n r n-1 n
¥ £ =Zx,. * e =2x,e, (8)
i=1 i=1

Let us explain that operator * s not a Hodge operator because it has a
slightly different definition. The Hodge operator is defined as follows:

* _
(e’] /\6]-2 /\“./\eik )_ gil,iz»---»ikJk-l,ik-z»---»iu keik-l Ae"m /\.../\ein k (9)
Thus, the operators have different signs:
— k(n—k) 4T
”‘(e,1 NN )—(—1) * (e,1 ne, /\.../\e‘l) (10)
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The operator *T il be referred to as the transposed Hodge star operator
and it has the following features:

AT (C1f0P g

e ne A.ne =% N A.ng )=

-k

- (71) (. ]E

*TT‘ _%

* *(e,‘ ne, A..nE, ):*75,‘_,\ iy G NE NN =& k€ NE N NE

r_wa gy (11)
1 .l

(T ey, e mne, =0T 6 € A ARG =8 i -

1 1 2
ey, ney mene, )= 0T 6 €A A, =

Pk NG N NE

Using the orthonormality of versors { 1 2 3 4} we have:
(ei|ej):5(/ (12)

, therefore, differentiating with respect to time in system ©®, we have:

de'. de'.
(dt,’le',]+[e',~l dt,’J—O (13)

, from which it follows that %€
dt'

is orthogonal to éi.

Therefore:

*ﬁ =4é2/‘é3/‘é4+4é4/‘é3/‘é1 +"§é4/‘él /‘é2+’£éz/‘é1 ney=

(é‘ i 113, éz‘@}Més/él{és‘ﬁ}zﬁél/éz{éﬂ%}zwl”é‘s:

dt dt dt
(éz|&}4/é3/‘él{é1‘@}4M1/€2{é4|%}2/‘é1/‘é3: (14)
e’dé1 NN é|dé3 1,18 e‘|é1 NN =

d d d
((éﬂw ecfer s es 8 oocfes @ preorte hecfei e, e

» ¢,
dr

LR W IR WEIN GFRT.L 0 T e,
= el|g €', Ae'sne, ez\g e, e e3|g e, ne\ e, H e, | —2 7 NN
= e'|& NN \dé €', ne | ne |dé €', ne | ne'
1 df 2 3 4 Z dt 2 4 dt 37T
09 o o019 ) ponol 01982 o n ne (15)
= 91|E e'sne ne'y ez\g €' ne'yne, 64\5 YNNI
TRV R WIS G
e\ ar eine,H e, ar ene i+ e,

R N R N NN NN, NN
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3
R N N N NN NN S NN

* 3
drt
:(e' de; Je‘ A A +( \dé je NN +(e \dé3 je' Ae' ne! +( | de; je NN
dt'2342dt 13dt,4124dt

A} dé ' ) A} A} dé A} ) A} A} dé A} ) A}
:(el|d—;Je4Aeer3ﬁ-(ez\d—;jelAe4Ae34{e3\d—;jelAeer3: (16)
(( i1 j€4 eﬁ{eH%]e‘l/\eﬁ{e‘ \ ]e /\ezj/\e3

d dt
«de,

R N NN R N I NS NN Y. NN

dr
e, ne'sne! |dé VNN \dé“ VN4V |dé €', Ae'| A
4 2 f 1 3 df 4 1 2 4 f
[ A—Je ne' /\644{ 4|de; je ne' /\eﬁ{ 3\de; Je Ny Ae = (17)
e/\e |dé e\ ne' |dé e\ ne, [ne
2 4 dt 3 3 f 2 4

2
The repeated bivector will be referred to as angular velocity @ and will be

defined as follows:

2 de', de',\, de',
w=|e,|—= le\ne',H ey | — |e ne'yH ey | —2 e Ae's+
dt' dt' dt'
+| e de’y e' Al tH e de e, ne',H e |de"‘ ', ne'

T A g 20 e 2/\E3

2
It is no accident that angular velocity @ was denoted by us as a differential

(18)

form of second order, defined on the tangent bundle 7M Re of manifold
M*®of the four-dimensional physical space because, according to the

definition, a differential form at point g of manifold M®is an external k-

form, defined on the tangent space TMqRe !

2
Therefore, the equation of angular velocity @ may be written in a

generalized way as a differential form of second order, defined on the

manifold 7M * in the following form:

! See the supplement. We wish to explain that the passage from vectors to linear
forms is possibile due to the isomorphism, defined by the scalar product. The scalar
product may be defined by means of Riemann metric on Reimann manifold.
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2
a(q) = @, 4(q)dq, ~dg, + @, ,(q)dg, Adg, + o 5(q)dg, Adg; +
+ @, ,(9)dgy A dq, + @, (@)dg, A dq, +w,5(q)dg, Adg,

a)l,A(q) ( 3(‘1)) ,(q)
w,(q) = ( 4(q) w4(q)
0(q) = (eu d‘“(q)] o,(9) (19)

o,.@)=| &, (@)1 92 )] Z o)

d (q)

a’z(

w,5(q) =

(
w,4(q) = (
(

2, (q)j 4(q)

,where g € M *

This means that we are going to use the external and differential form of
angular velocity, which is expected to prevent any misunderstanding.

n
n-—2

. . . -2
dimensional linear space of A" “ E" external forms of the order n-2

Moreover, the external form of the equation is defined on a

defined on space E".

Reassuming, in the physical space which is a n-dimensional differential

manifold 7 >3 angular velocity is a differential form of the order n-2,
defined on the manifold.

Ultimately, by substituting in Formula (1), we have:
—v0+—+*T OA X' (20)
t

, and:

2
v+ *T oA X (21)

. ' . - .
In the coordinate system ©' we will examine, in every case, only such
2 . . nnd I
elements”, for which velocity V' is equal to zero:

2
Vv=9,+* oAX' (22)
More generally, in a n-dimensional space, we have:
n-2
\72\70+*Ta)/\5c" (23)
, but 1_50 may be written as:

ﬁo =*T % ‘70 (24)

%i.e., small regions of space.
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Therefore, after substituting (24) in Formula (23), we have:

n—-2 n-2

— T —_
V=Y, +*¥ o AX'=* *Vo +* o AX'=

(25)
(*v + a)/\xj

We will frequently describe such cases in which \_50 =0. For such cases,

Formula (23) is in a simplified form:
-2
y=* na) AX' (26)

Let us note that for every element X' of 7 -dimensional space X'e E" we
have:

n-2 di-’ n-2
T
o —>—=* pAX' (27)
dt
. . . kI
Let us write down the results of the effect of isomorphism ™ on the base
2 2 4
versors of bivectors from a six dimensional space ¢; € A" E":
5 4 4
*T [el/\ Z x,e,] = *T(el Aey A Z x,elj = —Xx,e; + X5e,
i=1 i=1
5 4 4
T (ew/\ > x,el) = *T(& NegA Y rle,] = x,e, — X,e
i=1 i=1
2 4
7 (eg/\ine‘J= (e3/\e4/\2xej Xie, + X,e
i=1 i=1
. . (28)
7 (84/\ z x,e,j = *T(el Ae, A z xie‘.j = —X,e, + X e,
i=1 i=1
5 4 4
*T (85/\ xie,j—*r(e,/\e /\Z:xlej:)czﬁfxz,e2
i=1 i=1
2 4 4
7 (e(,/\ x,e,j=*T(e2/\e /\Z:x,e,j——xlef%—)hel
i=1 i=1

. 2 4 . 2.2 2 22
The base of the space of bivectors A” E™ is the set: {‘31 e.e, ewes’es}

, where the following notations have been introduced:

5

er=e Nne,

2

erx=e,Ne,

2

e;=e; ne,

: (29)

es =e Ne,
es =e Ae;

es = e, A e

Further, let us introduce Euclidean structure in space A" E* , assuming
the following definition of a scalar product:
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n

2
v (x|y)zzxiyi (30)
i=1

FeA" 2E"AFen " 2E"

, Where:

(31)

<
[
=
Q

The norm, determined by the scalar product, is in the following form:

)
¥l = Grx)= 2« .
i=1
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4.2 ANGULAR MOMENTUM IN THE FOUR-DIMENSIONAL
SPACE

n-2
. S -2
The following definintion of angular momentum J e A" "E" s

assumed:
n-2 N N
— ¥ v o— k ¥ v
= in AmY, = Z mx; \v; (33)
i=l1 i=1
Using equations obtained earlier, we have:
n=2 N N R r 2 R
J = *Zmix,. AV, =¥ m (%, + XAV, + ¥ o R | =
i=1 i=1
N N 2 N 2
= *Z mXx', AV, + *z mX, A * A X'+ *Z m;X'; A * on X'= (34)
i=1 i=1 i=1
I . 2 N ~ ’ 2
=*MR AV, +*MX, AN* oA R'+*Z mx' . A* oAX,
i=1
, Where it is assumed that:
N
M=Ym,
i=1
— 1 &
R= —Z mX; (35)
M
1 N
R=L1S m3
M S

Assuming that vectors R and \70 are coaxial, R'=0 and n =4, we have

the following angular momentum formula:
2 N 2
— T -
J=* E mx' . A* onX, (36)

i=1

Let us use Formulas (28) for calculating the components of angular
2 2 2
— __ ' ' o ' 1 ' 13_
momentum J for @ = @, e1'= we'Ae, and X, '=X,;'e,+x;;'e;’

2
1,

Jia

N 2
S ] [} 1 1 *T 1 1 ] 1) _
zmi(‘xz.i €, TX;, € )/\ W, e1n (x2,i €, +X;,; € )_
=1

(37)

% ] ) |l ] _ ] ' ] LN
m;@, (xz.f €, +Xx;; € )/\( Xy €3 FX3; €, )—

((xz.i‘)z + (x3.i‘)2 )Ez 'ney'= zw: m;@, ((XZ,I")Z + (x3,i‘)2 )el 'ne,'
P

I
M=

*» mo,

i

I
.[\42

Let us note that the left side of the equation is a bivector and on the right
side there is another bivector, namely angular velocity.

® Distance, in directions which are perpendicular to the axis of rotation.
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Therefore, we can write:
2

.j' =1lw (38)

, Where Iis a symmetrical linear operator (or tensor of inertia)
2 2
transforming bivector @ into bivector J .

More generally, in a n-dimensional space, we have:
n-2 n-2

J=1ow (39)

2 2 2 2 22
In the matrix form, operator /in the base {el,ez,%,e4,e5,e6} can be written

n
as I, ; where I € L2,... 5 =N _,AjeN, ,=N,.

Given the notations introduced herein, the component of angular
2
momentum J, is expressed by means of the general formula:

}=i‘]iéi:iiluw €= Zzlﬂwe‘_Zilﬂwié[

i=1 =l j=1 j=1 =1 i=1 j=I1

J,.=ZG:I..wv (40)

, or, more generally:

-2 N Nya Nyoy Ny Ny n-2 Ny n-2

- w2 Nua
J = ZJle,:ZZI o, e,—ZZIj,a) ei=) Y1, 0 e
=l j=1 j=1 =1 =l j=1
(41)
Ji:ZIjia)
J=1

Same as in the three-dimensional case, the bivectors of the base in which

the operator I is diagonal will be referred to as principal planes of
moments of inertia. Moments of inertia with respect to such planes will be

referred to as principal moments of inertia and denoted as IN .

Using the notation we have introduced for the base bivectors, we have the
following for angular velocity:

e o T T

Comparing angular velocity in the four-dimensional space and angular
velocity in the three-dimensional space:

- d d d
w:[ea |;;]el +(e] de;}z +[ez ‘ ;jea (43)
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2
, we find that the respective components of the bivector @ of angular

velocity may be equated with the components of the velocity vector.
Directly from Formulas (42) and (43) we obtain:

czo—— ez— ez— ez+e|@ez+e\d—%e2+e|&e2 (44)
@ 1 0)2 2 CO% 3 3 dz, 4 4 dt, 5 1 df 6
,and:
2 2 2 2 2 2 2
O=-0 6— @, &,— @ €+ W, €,+ @ es+ @, & (45)
, Where:
de,
o,=|e
(or2)
de
o, :[e4 | d;) (46)

de
25 (el|d;j

Therefore, from Formula (45) it follows that the components of the

bivector of velocity are rotations in planes which are spread on the

complements of the base bivectors. As an example, let us consider
2 2

component ¢, of the bivector of velocity @ which is — @, according to

Formula (45). This means that the issue dealt with is rotations in a plane

which is spread on vectors L(ez,%). The subspace which is spread on

2
vectors L(e,,e,), i.e., the same vectors which form the base bivector ¢

of subspace A" E" where n=4, is the invariant subspace of such
rotations.

On the other hand, when comparing moments of inertia [l- with their

three-dimensional counterparts, we have:
_ _ _ 7@34a)
11 = 11,1 = 114,14 = 11

I, = 124,24 = 12(301) (47)

— — 7B4d)
]3 _134,34 _13

2
Therefore, angular momentum in the principal planes {e’an} of the

moment of inertia takes the form:
2 22

J=1w=
(48)

2 2 2 2 2 2
_ 1 (] { (] 1 1
=-lweée-Lwe,~ Lo+l +Isoe+1sae

If the angular momentum is a bivector then its time derivative, equated
with torque, is also a bivector:
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2

aJ _5 (49)

t

More generally, for a n-dimensional space:

n-2
aJ _'5 (50)
dt

For calculating the time derivative of the bivector at the passage to the
system ®' we will use Formula (20) which takes the following form after

substituting R) = PO:

)l
—_— = —++ WN X (51)
dt {e,,ez,e3,e4} dt {6'1,6'2,8'3,6'4}

2
Transformation of the time derivative of bivector u# to the system @' isin

the following form:

6 2
: d e 2
du_ [Z ‘ j_ Cduy L de (52)
dt dt a4 S d
2
de' _ d(el/\e4)2 de', /\e'4+e'l/\de4 _
dt dt dt dt (53)

2 2 2 2
T T *
=* [a)/\e’l)/\e’4+e’1/\* (a)Ae'4):a)/\ e

*
, Where we have introduced a new operator A , defined as follows:

2 2 2
un” (x/\y)z*r(u/\x)/\y+x/\*r(u/\y) (54)

, and more generally:

n-2 n-2 n-2
u/\*(x/\y)z*r(u/\x)/\erx/\*T(u/\y) (55)

Therefore, after substituting (52) in (51) we obtain a formula for
transformating the time derivative of the bivector:

dtzt Sodu' 2 2 .2
; = z Le'i'+on u (56)
i=1

(C] o'

Chapter belongs to the "Theory of Space" written by Dariusz Stanistaw
Sobolewski.



, and more generally:

n-2 "
d u ("JJdu', n=2 n=2  n-2
= Le'i+on u 57
dt ~ gt (57)
0]
o

2
After passing to the system ®', in which the operator I is diagonal and its
components are constant in time, we obtain from Formula (49):

2 2
2 1
a7 d[io)

2 2 2 2
7 :Tz—lla), e\~ Lo on e\-Lao,e,+
2 N 2 2 2 N 2
- Lo, on e'),—- Lo, e',— Lo, on e+ (58)
2 2 N 2 2
+lsw,e',+1sw,0n €'+ 1sa;e's+
2 2 2 2 2

o0 - ' o
+Iso;on e's+1cage's+ 16w, on e

, or more generally:

n72 [;lj n—. n—. n—.
i=1
2

After substituting the bivector @ in Equation (56) with the expression from

Equation (18) we obtain:
o H (o e b A i ne i A Ao A A e ) At ) A
on €| = ((*@@lAe‘,fa)zez/\e‘,f@e3/\e4+a)4e]/\ez+a)je]/\e3+a)sez/\e3)Ael)Ae4+
e n¥ ((— we'\ne',—w,e', ne' —wye's ne' e ey Hase Ae's+ae, /\6'3)/\ e 4) =
2 2 2 2
=—m,e' N Fwe', Ne' e ne's—wse' Ne'y = —m, €+ oy e, o, e~ o ey

2 2

.
on e, = *T((— we'\ne',—m,e', ne' —wye', /\e'4+w4e',Ae‘2+wse',/\e'3+w(,e'z/\e‘l)/\e'z)/\e'ﬁ
KT (ot At ot Aol oot Aot o st s ot s s o aot Y a o )=
YN (( we'\ne',—wye'y Ae'y 0)393/\€4+0)4€1/\€z+0)5€1/\€3+0)6@z/\ez)Aea)*

2 2 2 2
- ' ' 1 ] 1 ' 1 (R ' ' 1 '
=weNe  —we Ne  toe,Nes e, Ne = es—myetw,e— ey

2 2
* % W g g W W Vo ] ]
N ey = ((70)12lAe47a)zeer470)363/\e4+a)4e]/\ez+a)sel/\e3+a)62ZAe3)/\e3)/\e4+
U [ R Rt B Rt B | K] ] Al ')
esA (( we'| ne',—we', ne', a)3e3/\e4+a)4e]/\ez+a)je]/\e3+a)sez/\e3)Ae4)7
2 2 2 2

- DV o Ao o — ] ] ] ]
=-we',Ae' +o,e'\ ne' —we's Ae'y +oe's Ae' = —w ey o, ¢+ g el — g € 60
RS (60)
on e, =% ((7a)le‘,Ae‘ra)ze'er‘ragegAe'4+ca4e'lAe’2+wse'lAe‘3+aJGe‘z/\e'3)/\e'l)Ae’2+
T
e'A* ((— we'\ne',—w,e', ne' —wye's ne' e ne'y Hase Ae's+ae, /\6'3)/\ [N ) =
2 2 2 2
— e ) o PRI ] ] ]
=—m,e' N~ Ne',+we ne's e Ne' = o, e+ g e+ o et oo e
2 2
AT o Vo o o Vo o ) )
on e =% (-we\ re',—we', e\~ ne',+o,e Ae'y +aose ne's+ae', el ) ne' ) ae's+
N ((— e ne ,—w,e'y ne'\—mie A @, N e A A ) A e ) =
2 2 2 2
— 0 AL g o Vo o ] ] ]
= D€, NE =W YN —WE N, — W Ny = Wy €+ W €3~ W €, — W, €,

2 2
* v %l ' ' ' ' ' ' ' ' ' ' ' ' ' '
ON €'g= ((*(:)@lAe‘,fa)zez/\e‘,f@e3/\e4+a)4e]/\eZ+a)je]/\e3+a)sez/\e3)Aez)Ae3+
T
e n* ((— we'\ne',—m,e', ne' —we' s Ne' e ey Hase Ne's+ae', Ae'y ) A e‘l) =

2 2 2 2
- g e e Ve — ] ] ] ]
=—w,e'\ne'stae ne'stw,e, ne'\—oe, Ne' =~y e — o, -, e -, ey

Therefore, ultimately:
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()
2 dlle
dJ _ e -Tol-we ; o we
= =-lo e\ ~-1o|-0,e+oe,+o,e—wne, |+
dt dt

2 2 2 2 2
Do ] ] ] ]
—12102ez—lzwz(wlel—(usel+w4e6—wse4)+

2 2 2 2 2
i ] ] ] g
—1310363—13103(—(0, eﬁwzeﬁwseﬁ—wses]

+
2 2 2 2 2
P g ] g ]
+lio, e+ 10, 0+ e+ o e+ ose |+
2 2 2 2 2
+15a')se'5+15w{wxe‘,,+w,,e‘1—wle'4—w4e'lJ+

2 2
"

2 2 2
i ] ] ]
+16w,,e“+16w“(—wxes—w5ex—a)ze‘,—a)[,e

(61)

2
- Lo, - Lo, + Lo,0,+ 10,0, -1s o0, |',+

2
+(— Lo, + 1,0,0, — I,0,0, + 1+ 0,05 — I 5 a)sa)4)e'l+
i )

2
+| = Loy + oo, - 10,0, +1s 0,0, — 1 (uswsje'3+

+(i4w4+1wlw5+1 0,0 — I's w0, - Ie.a)ﬁwﬁje +

2 2
+| Is o = Ioyw, + Liwyog + 1+ 0,0, — 1 a),,a)XJe's-ﬁ-

2
+| Is &5 — 10,0, — I,0,04 +14a)4a),+15wa)xje“

Therefore, Euler equations in the four-dimensional space take the following

form:

Lo, = (1 -1 )(u 5 + (14—15]104(05 - D,
Izruzf I,=-1 )(u(ux (14—10](044)6 D,
La, = (I, - 1,)o,0, + (1, ngruﬁ—Dx
(62)
lso, = ( ja}(us (15 ja)z(ubJrD
Is o _[1,—14}0(04 [I ja)}a)‘,JrD5

Is g = [L—h](uz@ (11*15}0 w5+ Dy

In the case where all the components of the moment of force are equal to

zero we obtain the following after multiplying by @, @, , 5,0, , s, (0,

respectively:

oo, = (12 - 13)w,w2a)3 +(147 15}&),&)4605
Loyw, = (I, - I1,)o,0,0, +(14—16)a)2w4a)6
Lo,o, = (I, -1, )a),a)za)3 +(Is—16)a)3a)5wﬁ
lio,0, :(15— ]a)a) s+ | Le— Izjwza)4w6 (63)

Is os0; :(1 *14]&)0)460 +(16* ]w;cosw6

Is g0 = (12 71416025040)6 +(13 - Isjw3w5w6
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lLoo +1,0,0,+10,0,+1i0,0,+1s0,0,+1s 0,0, =

(64)

, Which gives ultimately:

di[]la)f+12w22+13a)32+14a)f+15w52+16a)62j:0 (65)
t

This equation leads to the law of conservation of kinetic energy for space
channels:

JEOJE g g IR TR
Sl T2 3 a5 16 —const (66)
Lo LI I

More generally:
N,, 72
Ji

— =const (67)

i=1 i

Then, after multiplying by 1 @, 1,0,,1,0,,1,0,,1,05,1,@, respectively,
we obtain:

o, = 1,1, - I,)o,0,0, + 1,[147 15)0)1@4@5

La,o, = 1,1, - I,)o,0,0, + 12[147 16jw2w4w6

oo, = L1, - 1,)o0,0, +13[15—16ja}3a)5w6

(68)
I}o,0, = 14[15— ]1]601604605 + 14(15— Iz)wzw4cu6
Lo, = 15[1, —14)w,w4a)5 + 15[15— Is)a)}wsw(,
I o0, = I(,[I2 - 14)60260440(, + I(,[I3 - Isjw3w5w6
Ultimately, we obtain:
2 - 2 . 2 . 2 . 2. 2.
I oo + 10,0, + [;0,0,+ 0,0, + ;0,0 + 1, 0,0, =0 (69)
, Which gives
d ( 2 2 2 2 2 2 2 2 2 2 2 2
Lo} + 20+ 120} + Lo} + 120} + 2ol )=0
dt 1 1 2 2 3 3 44 5 5 676 (70)

This equation leads to the law of conservation of angular momentum for
space channels:

JE+J]+ I+ T+ TP+ J]; = const (71)

, and more generally:
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N,yo

J l_z = const (72)

—_

i=
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4.3  SPACE CHANNEL AT REST

Taking into consideration the symmetry of a space channel or, more
properly, assuming that a space channel is symmetrical, we assume the
following equalities:

I.=1=1,=1, (73)

, and

I,=1,=1=1I (74)

A similar assumption will be made with regard to the respective angular
velocities:

;=0 =0, =0,

a)WEa)4=a)5 20)6

(75)

Therefore, directly from Formula (48), we obtain a simplified formula of
angular momentum for a space channel:

2 22 2 2 2 2 2 2
J:Ia)z—Isa)s(el+e2+e3)+IWwW(e4+es+66) (76)

Additionally, for a space channel which is orthogonal to boundary
hypersurfaces, we will assume that:

,; =0 (77)

After substituting in the angular momentum formula, we obtain:

2 22 2 2 2
J=1w=—lsws(el+e2+e3) (78)

In an interesting case, a space channel at rest only has a single component

of angular momentum, for instance, componente, A ¢, :

2
Jo=—1.me ne, (79)

In fact, it appears that this type of a space channel is characterized by
rotary motion around the axis of ¢, but also around the axis of ¢, while, in

three-dimensional physics, rotations around the axis of e, are connected
with the spin.

Moreover, let us note that there are exactly three space-channel
orientations in which rotations around the axis of ¢, take place. Does it

follow that quarks are space channels having such orientations? This
question will be answered in the subsequent chapters.
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